

Security council

Preventing water conflict in crisis regions

German International School
of The Hague
Model United Nations

Carmen Hassan

Forum: Security Council

Issue: Preventing water conflict in crisis regions

Student Officer: Carmen Hassan

Position: Deputy Chair

Introduction

Freshwater is vital for practically every aspect of lives of humans, animals, plants, environments and ecosystems. It can be the difference between life and death, and between bounty and poverty. Therefore, proper planning and management of water is crucial, and particularly so when there is too little or too much, of it. Notwithstanding all the advances we have made, water planning and management continues to be challenging. Part of this difficulty has been due to our inadequate understanding of the land, ocean and atmospheric systems, and their interactions and influences on water resources. However, population growth and its many associated effects (e.g. increase in water demand, industrialization, urbanization, water pollution, deforestation) have also played a significant role.

According to some recent estimates, about 900 million people in the world are without access to safe drinking water and about 2.6 billion people are without improved sanitation facilities (WHO/UNICEF, [2008](#); United Nations, [2010](#)). Primarily because of these, and also of other associated factors, millions of people, the majority of which are children under five years of age, die every year from water-related diseases, such as malaria, typhoid and cholera; indeed, water-borne diseases are the third leading cause of death from all infectious diseases. Hydrological extremes, such as droughts and floods, often contribute to, or at least exacerbate, these problems. The developing regions, where much of the world's population lives, are the most affected by these. While the present water situation and water-related problems are themselves grim, the future looks even worse, unless urgent measures are undertaken to stem the slide.

Three important factors, among others, are anticipated to further complicate the water situation in the future (at least, increase the uncertainty), as briefly described below: (1) population growth; (2) global climate change; and (3) transboundary river basins.

Population growth is an important driver for water-related activities and problems, since an increase in population normally leads to an increase in water demands in almost all sectors (domestic, industrial, agricultural, energy and recreation), unless water management practices become more efficient. Recent estimates by the United Nations (UN) indicate that the world population may increase from 6.7 billion in 2007 to 7.7 billion by 2020 and to 9.2 billion by 2050 (United Nations, [2007](#)). This increase will be absorbed mostly by the developing regions, whose population is projected to rise from 5.4 billion in 2007 to 7.9 billion in 2050. Since these regions are precisely the ones already facing significant water and sanitation problems, and struggling to deal with hydrological extremes whenever they occur, the future situation may likely get much worse.

Global climate change – due to intensification of the so-called greenhouse effect – is likely to have important implications (whether positive or negative) for future water resources at the global, regional and local levels. The exact impacts are hard to predict. However, according to the majority of scientists, climate change will intensify the global hydrological cycle and will cause more frequent and more severe hydrological extremes, such as droughts and floods (IPCC, [2007a](#); Kundzewicz et al., [2007](#), [2008](#)), although there are still questions about the methods used for making future projections and the reliability of outcomes (e.g. Koutsoyiannis et al., [2008a](#)). Since water planning and management is more difficult during periods of droughts and floods, climate change may likely bring additional challenges.

There are over 260 river basins and 270 groundwater aquifers being shared by two or more nations (e.g. Wolf et al., [1999](#); UNESCO, [2009](#)). These transboundary waters cover over half of the Earth's surface and serve over half of the world's population. They have been the sources of numerous conflicts between the nations sharing them, although there have also been instances of them leading to cooperation (e.g. Wolf, [1998](#); Salman & Uprety, [2002](#); Earle et al., [2010](#)). As a result, adequate planning, development and management of these waters are already impeded. Therefore, further population growth and global climate change may likely bring additional complications to the future planning and management of these transboundary waters.

In view of these observations, some researchers perceive that there will not be enough freshwater in the world to sustain all lives and ecosystems and that there will be water scarcity and crisis (e.g. Gleick, [1993a](#); Postel, [1997](#); de Villiers, [1999](#); Barlow, [2007](#); Wood, [2008](#)) and associated conflicts (e.g. Gleick, [1993b](#); Shiva, [2002](#); Barlow, [2007](#)). Although such a perception may have some merits, there are also important questions, especially on the basic reasons for future water crisis and water conflicts. As for water crisis, one argument is that the world is not facing water crisis because of actual physical scarcities of water, but may face water crisis because of widespread and continuous mismanagement of water (e.g. Biswas, [2006](#)). This argument is very well supported by the fact that in nearly all developed and developing countries, water management practices and processes continue to be inefficient and suboptimal, including significant leakage/wastage in water supply/use and lack of proper treatment to maintain quality of water for various uses. Another argument is that water scarcity is economically-driven, i.e. it is caused by lack of investment in water or lack of technological infrastructure for water (see Koutsoyiannis, [2011](#)). As for water conflicts, it is argued that transboundary (and other shared) waters, while no doubt leading to potential conflicts, also lead to potential cooperation between/among, and benefits to, the nations/states sharing them, depending upon the basin and the prevailing situation (e.g. Wolf, [1998](#); Elhance, [1999](#); Postel & Wolf, [2001](#); Salman & Uprety, [2002](#); Earle et al., [2010](#); see also Biswas, [2011](#); Uprety & Salman, [2011](#); Tortajada & Pobre, [2011](#), for some specific case studies from Asia). Indeed, there are even concerns that water is not necessarily the root cause of the so-called “water conflicts,” but is sometimes simply used as a “weapon” to settle political and other ideological differences.

Nevertheless, regardless of the reason(s), it is fair to say that there is an increasing potential for water crisis and associated conflicts around the world in the future, especially if our current “business-as-usual” approach continues. Any desire to avoid such potential water crisis and conflicts will require new ways of thinking and implementing water planning and management practices (see, for example, Biswas et al., [2009](#) for details), in addition to our old ways that are still effective (see, for example, Koutsoyiannis et al., [2008b](#), for a discussion of urban water management in Ancient Greece). This should happen in both “hard science” areas (physical science and engineering) and “soft science” areas (social, political, economic and others), to an extent much more than what we have been traditionally accustomed to. These include, among others: (1) new techniques for more accurate assessment of water quantity and quality; (2) new technologies for more efficient water production and saving; (3) new methods for improving water education; (4) new water laws for better sharing of transboundary (and other) waters; and (5) new means for addressing the role of social, political, cultural and other aspects of water issues. To advance in this direction, a much broader perspective on water is clearly needed, encompassing not only “traditional” water science and engineering but also the social, political, economic, environmental, technological and human behavioural aspects and interactions among these. Development of such an integrated framework to address the water issues, as well as communication of our water studies and outcomes to the many different stakeholders of the water sector (i.e. almost everyone), is key to future progress.

Definition of Key Terms

Scarcity - the state of being scarce or in short supply; shortage

Transboundary waters – surface or groundwater resources (like rivers, lakes, aquifers) that cross or form boundaries between multiple countries or political entities, requiring international cooperation for sustainable management, equitable use, and pollution control, as actions in one nation directly impact others

Aquifer - a body of permeable rock which can contain or transmit groundwater

General Overview

The quantity of freshwater available per person in the world has been and continues to decrease due to a combination of factors, including population increase, water pollution, inadequate planning and management of transboundary and other shared waters, and inefficient operation of water supply and distribution systems. Consequently, there is an increasing potential for water scarcity, crisis and associated conflicts around the world in the future, especially in developing regions, if the current trend in water consumption and management practices continues. In this fast-changing and highly-interconnected world, the problems related to water crisis and conflicts are numerous, complicated and challenging. Efforts to effectively resolve these problems require a clear vision of the future water availability and demand as well as new ways of thinking, developing and implementing water planning and management practices.

Major Parties Involved

India- India recognizes a severe water crisis driven by overuse, pollution, climate change and mismanagement, necessitating urgent systemic change, with government launching major initiatives like Jal Jeevan Mission for piped water and Atal Bhujal Yojena for groundwater, while experts call for climate resilient governance, better pricing, crop pattern-shifts, and strict enforcement to secure a water-secure future for its vast population facing health, agriculture and economic risks.

Iran- Iran's opinion on its severe water crisis involves acknowledging it as a national emergency, with officials and experts pointing to poor governance, failed engineering projects (like dams and inter-basin transfers), and climate change as causes, while blaming sometimes includes blaming divine will or women's hijab, leading to public concern, protests, calls for radical policy shifts, and warnings of "water bankruptcy" threatening stability and even potential evacuation of cities like Tehran

Iraq- Iraq's opinion on its water crisis is one of deep concern, recognizing it as an existential threat to national security, public health, and economic stability, with widespread blame placed on governmental neglect, upstream dam management by neighbors (Turkey, Iran), and internal mismanagement (overuse, pollution, outdated infrastructure). Experts and citizens call for urgent action, better regional agreements (like recent deals with Turkey), improved irrigation, and stronger governance to manage dwindling resources, especially concerning the Tigris and Euphrates rivers, impacting agriculture, livelihoods, and basic access to safe water

Pakistan- Pakistan views its water crisis as a severe, multifaceted threat driven by rapid population growth, climate change, and poor infrastructure, leading to severe scarcity, economic instability, and health issues, with opinions emphasizing the urgent need for modernizing irrigation, better governance, increased water storage, and inter-provincial cooperation over divisive mega-projects to manage the Indus Basin effectively.

Ethiopia- Ethiopia views its water crisis as a major developmental challenge, stemming from abundant resources but poor management, climate change (droughts/floods), rapid population growth, and inadequate infrastructure, leading to severe health, poverty, and education issues, especially in rural areas, though the government and partners are implementing solutions like rainwater harvesting, groundwater management, watershed restoration, and improving access to clean water, aiming for water security through policy reforms and large-scale programs

Syria- Syrians view their water crisis as a catastrophic, multi-layered disaster fueled by climate change (drought, low rainfall), war-damaged infrastructure, weaponization of water by all sides, corruption (illegal drilling/connections), and upstream actions by Turkey and Israel, leading to severe shortages, health crises (cholera), and economic ruin, with calls for urgent, integrated governance and infrastructure repair to prevent further collapse. Opinions range from blaming external actors and conflict to internal mismanagement, but a consensus exists that water is now life-threatening, impacting daily survival and food security.

Yemen- Yemenis universally regard the water crisis as a severe, existential problem that touches every aspect of life, from health and agriculture to social stability and conflict. Opinions across various Yemeni groups, including citizens, farmers, aid organizations, and

political factions, converge on the crisis's devastating impacts, though they may differ on the specific political responsibility for the situation.

Jordan- Jordan views its severe water crisis as a critical national security issue, driven by climate change, population growth (including refugees), and overuse, necessitating massive infrastructure projects like the National Conveyance Project, alongside strategies to reduce leaks, diversify sources (like treated wastewater), and implement efficient practices, all while battling illegal extraction and transboundary water challenges.

Lebanon- Lebanon's water crisis is viewed as an existential, man-made emergency, not just seasonal, driven by drought, climate change, conflict-related infrastructure damage, mismanagement, and poor governance, leading to contaminated, scarce water, forcing reliance on expensive alternatives, and requiring urgent reforms in management and infrastructure beyond just new projects. Experts call for immediate action, including better treatment, pollution control, efficient distribution, and tackling illegal wells, warning of disease risks and long-term water insecurity.

DRC- The Democratic Republic of Congo (DRC) government and international partners view the water crisis as severe, driven by conflict, poor infrastructure, and underinvestment, despite the country's vast water resources; opinions emphasize the urgent need for infrastructure repair, restoring essential services like water treatment, and protecting water points to prevent waterborne diseases (cholera, etc.), which are more deadly than violence for children in conflict zones, requiring immediate aid and long-term sustainable solutions.

Israel- Palestine - The Israel-Palestine water conflict involves historical disputes over shared resources like the Jordan River and aquifers, intensified by unequal distribution, Israeli restrictions on Palestinian water access, and the systematic targeting or destruction of Palestinian water infrastructure, particularly in Gaza since October 2023, leading to severe humanitarian crises and accusations of water weaponization, with water scarcity and sanitation issues worsening health conditions

Timeline of Events

Ancient History-

- c. 2500 BC: Lagash and Umma (Mesopotamia) - The earliest known interstate water conflict occurred between the Sumerian city-states of Umma and Lagash over access to the "Gu'edena" region. The King of Lagash diverted water from irrigation canals to deprive Umma of water.
- 7th Century BC: Assyria - Assyrians used water as a weapon of war by poisoning enemy wells.
- c. 612 BC: Nineveh - A coalition of Babylonian, Median, and Egyptian forces diverted the Khor River to flood Nineveh, the Assyrian capital, allowing them to use rafts for siege engines and contributing to the city's destruction.

Modern History and Notable Events-

- 1840s-1880s: United States - A series of local conflicts occurred, including mobs destroying reservoirs in Ohio over health fears, disputes over dam construction in New Hampshire, and violence over water rights in New Mexico.
- 1964-1967: Jordan River Basin - Known as the "War over Water" or "Battle over Water," this period saw a series of confrontations between Israel and its Arab neighbors over control of water sources in the Jordan River drainage basin.
- 1990s-Present: Middle East and Africa - Water-related violence has increased in regions like the Nile River basin (Egypt, Ethiopia, Sudan), the Helmand River (Iran and Afghanistan), and the Jordan River basin (Israel and Palestine).
- 2000: Cochabamba Protests (Bolivia) - Protests erupted in Bolivia over the privatization of the municipal water supply, which significantly raised prices for local residents.
- 2014-Present: Russia-Ukraine War - Ukraine blocked the North Crimean Canal after Russia's annexation of Crimea, cutting off 85% of the peninsula's drinking water supply. Water infrastructure has remained a target and casualty throughout the ongoing war.

Recent Escalation (21st Century)

- 2012–2021: This period saw roughly four times more conflicts than the years 2000–2011.
- 2023: Violent incidents soared by 50% compared to 2022, a year which had nearly double the cases of the year before.
- Ongoing Conflicts: In Israel and Palestine, there have been hundreds of documented violent incidents over water allocations and access, with attacks on water wells, pipes, and treatment plants.

Previous attempts to solve the issue

Previous attempts to solve water conflicts have primarily involved international treaties, diplomatic negotiations, and the implementation of cooperative water management strategies. These efforts range from historical agreements that have survived wars to modern initiatives focusing on sustainable water governance and technology.

Historical and Diplomatic Approaches

- **Treaties and Agreements:** Formal agreements between nations sharing water bodies have been a common method. A prominent example is the 1960 Indus Waters Treaty between India and Pakistan, brokered by the World Bank. This treaty has successfully survived multiple conflicts between the two nations, demonstrating the resilience of water cooperation even amid broader political tensions. Similarly, the US and Mexico have established an international agreement for the Colorado River basin management.
- **Mediation and Negotiation:** Third parties, often international bodies or special envoys, have frequently been involved in mediating disputes. The failed Johnston negotiations in the mid-1950s attempted to mediate water disputes in the Jordan River basin between Israel and its Arab neighbors. More recently, trilateral

negotiations in 2015 between Egypt, Sudan, and Ethiopia led to a framework agreement regarding the Grand Ethiopian Renaissance Dam (GERD) on the Nile.

- **Informal Cooperation:** In some cases, hostile entities have engaged in informal cooperation on water issues, even during active conflicts. Israel and Arab nations have had informal water cooperation through several wars.
- **Legal Frameworks:** International law, such as the United Nations Convention on the Law of the Non-Navigational Uses of International Watercourses, provides a legal basis for nations to utilize shared water resources in an "equitable and reasonable manner".

Modern and Local Solutions

- **Integrated Water Resources Management (IWRM):** This approach advocates for coordinated development and management of water, land, and related resources to maximize economic and social welfare without compromising ecosystem sustainability.
- **Community-Based Management:** At a local level, establishing local water committees to oversee shared wells and resolve disputes has proven effective in mitigating local-level violence.
- **Technological Solutions:** Efforts to improve efficiency in water use (especially for agriculture), leak detection, and the exploitation of unconventional water sources (like desalination or advanced wastewater treatment) aim to reduce scarcity that often drives conflict.
- **Data Sharing and Assessment:** Initiatives like the Transboundary Freshwater Dispute Database and the Water Conflict Chronology database help researchers and negotiators understand historical precedents and apply successful blueprints to current problems.

Despite these attempts, water-related conflicts are increasing, often shifting from interstate disputes to subnational violence over access and quality. Ongoing challenges include climate change impacts, population growth, and weak governance, which necessitate continuous efforts toward cooperation and sustainable water policies.

Possible Solutions

Three effective solutions for water conflict involve improving water management & efficiency (like drip irrigation, leak reduction), fostering cooperative governance & diplomacy (transboundary agreements, shared data), and implementing technological innovations (desalination, wastewater recycling, atmospheric water generators) to increase supply and reduce waste, alongside public education for conservation

1. Enhanced Water Governance & Cooperation:

- Transboundary Agreements: Establish legal frameworks and joint management bodies for shared rivers or aquifers to ensure equitable allocation and conflict prevention, as seen in efforts for the Nile Basin.

- Integrated Water Resource Management (IWRM): Manage water holistically, involving all users (agriculture, industry, domestic) and balancing supply with demand, supported by public awareness and education.

2. Technological Innovation & Infrastructure:

- Water Recycling & Reuse: Treat and recycle wastewater for non-potable uses, reducing reliance on fresh sources.
- Efficient Technologies: Deploy smart irrigation (drip irrigation), leak detection, and energy-efficient desalination plants to maximize existing resources and create new ones.

3. Water Efficiency & Conservation:

- Reduce Waste: Fix leaking urban systems (losing up to 68% in some places) and implement water-saving appliances.
- Demand Management: Introduce policies, pricing, and public campaigns to encourage reduced consumption in households, industry, and especially agriculture (which uses ~70% of freshwater).

Bibliography

<https://www.wri.org/insights/how-solve-water-related-conflicts#:~:text=categories%20can%20work,-,Natural%20Resources%2C%20Science%20and%20Engineering%20Approaches,in%20highly%20water%2Dstressed%20regions>.

<https://www.un-ihe.org/collection/water-cooperation-and-conflict#:~:text=Media%20Science%20and%20Water%20Diplomacy,knowledge%20from%20the%20Global%20South>.

<https://www.danfoss.com/en/about-danfoss/articles/cf/three-efficient-solutions-to-tackle-the-water-challenge/>

<https://news.oregonstate.edu/news/history-water-disputes-cooperation-not-conflict#:~:text=That%20deadly%20seriousness%20with%20which,historical%20precedents%20for%20a%20blueprint>.

<https://amplyfi.com/insights/water-wars-a-look-at-past-global-water-related-conflict#:~:text=From%20as%20far%20back%20as,they%20were%20created%20to%20address>.

<https://shs.cairn.info/revue-l-europe-en-formation-2012-3-page-139?lang=en#:~:text=This%20resulted%20in%20border%20skirmishes,disputes%20in%20the%20mid%2D1950s>.

[https://thebulletin.org/premium/2024-07/water-and-war/#:~:text=Attacks%20on%20water%20infrastructure%20and,day%20\(Pacific%20Institute%202024\).](https://thebulletin.org/premium/2024-07/water-and-war/#:~:text=Attacks%20on%20water%20infrastructure%20and,day%20(Pacific%20Institute%202024).)

<https://www.worldwater.org/conflict/list/#:~:text=Nebuchadnezzar%20builds%20immense%20walls%20around,their%20enemies%20with%20rye%20ergot>.

[https://www.worldwater.org/conflict/map/#:~:text=A%20mob%20destroys%20reservoir%20in%20lock%20destroyed%20in%20Canada%20\(1890\)](https://www.worldwater.org/conflict/map/#:~:text=A%20mob%20destroys%20reservoir%20in%20lock%20destroyed%20in%20Canada%20(1890))

<https://news.un.org/en/story/2025/03/1160706#:~:text=With%20ongoing%20cholera%20and%20mpox,Cholera%20cases%20tick%20up>

<https://smartwatermagazine.com/news/unicef/unicef-and-partners-dr-congo-provide-clean-water-700000-people-a-day-amid-conflict#:~:text=However%2C%20many%20still%20rely%20on,to%20the%20conflict%20safeguard%20water.>

<https://thewaterproject.org/water-in-crisis-congo#:~:text=As%20a%20result%2C%20those%20who,Learn%20More%20%C2%BB%20Fundraise>

<https://www.arabnews.com/node/2616453/middle-east#:~:text=Experts%20say%20the%20roots%20of,Reuters/File>

<https://www.actioncontrelafaim.org/en/news/press/six-months-after-ceasefire-hundreds-of-thousands-in-lebanon-still-deprived-of-running-water#:~:text=%E2%80%9CMore%20than%2082%25%20of%20the,services%E2%80%9D%2C%20Dr%20Daher%20said.>

<https://www.arabnews.com/node/2616453/amp#:~:text=Shrinking%20snowpacks%20and%20earlier%20melts,operate%20additional%20solar%2Dpowered%20wells.>

https://www.mwi.gov.jo/EBV4.0/Root_Storage/AR/EB_Ticker/National_Water_Strategy_2023-2040_Summary-English_ver2.pdf

<https://jordantimes.com/news/local/jordan-faces-worlds-worst-water-shortage-says-water-minister#:~:text=AMMAN%20%E2%80%94%20Jordan%20is%20grappling%20with,infrastructure%20project%20in%20Jordan's%20history.>

<https://www.jordanpulse.com/article/10785#:~:text=The%20threat%20to%20cut%20off,the%20face%20of%20any%20emergency.>

<https://carnegieendowment.org/sada/2025/04/struggling-over-every-drop-yemens-crisis-of-aridity-and-political-collapse?lang=en#:~:text=Chronic%20scarcity%20of%20water%20resources,like%20Tihama%20and%20Wadi%20Hadramawt.>

<https://yemen.un.org/en/303299-undp-yemen-when-water-hard-reach-and-climate-change-intensifies#:~:text=%E2%80%9CConflicts%20over%20water%20access%20sometimes,qa%20further%20compounds%20the%20problem.>

<https://www.eip.org/from-scarcity-to-cooperation-water-as-an-entry-point-for-peace-in-yemen#:~:text=After%20a%20decade%20of%20armed,About%20the%20project>

<https://syriadirect.org/drought-drilling-diversion-daraas-deepening-water-crisis#:~:text=The%20flow%20from%20springs%20feeding,to%20improve%20public%20water%20access.>

<https://360info.org/why-water-scarcity-is-a-key-factor-in-syrias-protracted-conflict#:~:text=With%2090%20percent%20of%20the,power%20and%20control%20over%20civilians.>

<https://carnegieendowment.org/sada/2024/04/syrias-water-and-food-security-crisis?lang=en#:~:text=Climate%20change%20and%20increased%20drought&text=The%20two%20main%20factors%20that,capacity%20of%20renewable%20water%20resources.>

<https://siwi.org/ethiopia-water-and-landscape-governance-project#:~:text=In%20Ethiopia%2C%20recurrent%20droughts%2C%20water,access%20to%20the%20relevant%20capacity.>

https://www.american.edu/cas/economics/ejournal/upload/hendrix_accessible.pdf

<https://thewaterproject.org/water-crisis/water-in-crisis-ethiopia#:~:text=Similar%20to%20many%20African%20countries,five%20years%20old%20in%20Ethiopia.>

<https://www.dawn.com/news/1913435#:~:text=Pakistan's%20vulnerability%20is%20compounded%20by,to%20any%20extreme%20weather%20event.>

<https://margallapapers.ndu.edu.pk/index.php/site/article/download/317/202/520#:~:text=The%20water%20crisis%2C%20therefore%2C%20has%20far%2Dreaching%20consequences%2C,declining%20agricultural%20output%20and%20increasing%20food%20insecurity.>

<https://www.theguardian.com/environment/2025/dec/16/no-water-no-life-iraqs-tigris-river-in-danger-of-disappearing#:~:text=Within%20Iraq%2C%20water%20is%20frequently,first%20of%20its%20kind%2E%80%9D%20deal.>

<https://www.chathamhouse.org/2025/08/iraqs-water-crisis-dammed-neighbours-failed-leaders#:~:text=Iraq's%20water%20crisis%20is%20more,geography%2C%20determines%20Iraq's%20water%20future.>

<https://www.unicef.org/iraq/press-releases/running-dry-water-scarcity-threatens-lives-and-development-iraq#:~:text=Baghdad%2C%2029%20August%202021%2D%20Nearly,for%20every%20child%2E%80%9D%20she%20added.>

<https://www.iranintl.com/en/202512194131#:~:text=Damage%20consistently%20concentrates%20in%20areas,territorial%20collapse%2C%20he%20said.>

<https://carnegieendowment.org/emissary/2025/11/iran-water-crisis-warning-climate?lang=en#:~:text=Starting%20in%20the%202010s%2C%20Iranian,a%20decade%20of%20restoration%20efforts.>

<https://www.citystgeorges.ac.uk/news-and-events/news/2025/december/iran-water-shortages#:~:text=Iran's%20divided%20decision%2Dmaking%20system,Khuzestan%20to%20neighbouring%20countries%20downwind.>

<https://www.orfonline.org/expert-speak/india-s-water-crisis-why-climate-resilient-governance-is-urgent#:~:text=India's%20water%20challenges%20in%202025,Centre%20for%20New%20Economic%20Diplomacy.>

<https://indianexpress.com/article/opinion/columns/india-is-grappling-with-a-water-crisis-it-must-act-now-10087678#:~:text=India's%20water%20crisis%20is%20a,delay%20is%20not%20an%20option.>

<https://eastasiaforum.org/2024/02/27/indias-thirst-for-improved-water-security#:~:text=In%20Brief,experiencing%20water%20stress%20by%202025.>

<https://siwi.org/latest/water-crisis-india-everything-need-know/>

<https://www.wri.org/insights/highest-water-stressed-countries#:~:text=Our%20data%20shows%20that%20in%202025,Situation%20is%20Poised%20to%20Worsen>

<https://www.tandfonline.com/doi/abs/10.1623/hysj.53.1.3>

<https://www.tandfonline.com/doi/abs/10.1623/hysj.53.4.671>

[https://www.tandfonline.com/action/getFTRLinkout?url=%2Fdoi%2F10.1080%2F02626667.2011.580747&doiOfLink=10.1080%2F07900629948682&linkType=VIEW_NO_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT](https://www.tandfonline.com/action/getFTRLinkout?url=%2Fdoi%2F10.1080%2F07900629948682&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1080%2F07900629948682&linkType=VIEW_NO_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT)

https://www.tandfonline.com/action/getFTRLinkout?url=https%3A%2F%2Fdoi.org%2F10.1016%2FS1366-7017%2898%2900019-1&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1016%2FS1366-7017%2898%2900019-1&linkType=VIEW_NO_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT

https://www.tandfonline.com/servlet/linkout?suffix=ref&dbid=16&doi=10.1080%2F02626667.2011.580747&key=10.1163%2F9789004480216&getFTLinkType=true&doiForPubOfPage=10.1080%2F02626667.2011.580747&refDoi=10.1163%2F9789004480216&linkType=Crossref&linkSource=FULL_TEXT&linkLocation=Reference
<https://www.tandfonline.com/doi/full/10.1080/02626667.2011.580747#>
https://www.tandfonline.com/servlet/linkout?suffix=ref&dbid=16&doi=10.1080%2F02626667.2011.580747&key=10.2307%2F2539033&getFTLinkType=true&doiForPubOfPage=10.1080%2F02626667.2011.580747&refDoi=10.2307%2F2539033&linkType=Crossref&linkSource=FULL_TEXT&linkLocation=Reference
https://www.tandfonline.com/action/getFTRLinkout?url=%2Fdoi%2F10.1080%2F02626667.2011.579076&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1080%2F02626667.2011.579076&linkType=VIEW_FULL_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT
https://www.tandfonline.com/action/getFTRLinkout?url=https%3A%2F%2Fdoi.org%2F10.1016%2FS1366-7017%2898%2900019-1&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1016%2FS1366-7017%2898%2900019-1&linkType=VIEW_NO_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT
https://www.tandfonline.com/servlet/linkout?suffix=ref&dbid=16&doi=10.1080%2F02626667.2011.580747&key=10.2307%2F3183260&getFTLinkType=true&doiForPubOfPage=10.1080%2F02626667.2011.580747&refDoi=10.2307%2F3183260&linkType=Crossref&linkSource=FULL_TEXT&linkLocation=Reference
https://www.tandfonline.com/servlet/linkout?suffix=ref&dbid=16&doi=10.1080%2F02626667.2011.580747&key=10.1163%2F9789004480216&getFTLinkType=true&doiForPubOfPage=10.1080%2F02626667.2011.580747&refDoi=10.1163%2F9789004480216&linkType=Crossref&linkSource=FULL_TEXT&linkLocation=Reference
https://www.tandfonline.com/action/getFTRLinkout?url=%2Fdoi%2F10.1080%2F02626667.2011.572886&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1080%2F02626667.2011.572886&linkType=VIEW_FULL_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT
https://www.tandfonline.com/action/getFTRLinkout?url=%2Fdoi%2F10.1080%2F02626667.2011.576252&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1080%2F02626667.2011.576252&linkType=VIEW_FULL_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT
https://www.tandfonline.com/action/getFTRLinkout?url=%2Fdoi%2F10.1080%2F02626667.2011.579074&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1080%2F02626667.2011.579074&linkType=VIEW_FULL_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT
https://www.tandfonline.com/action/getFTRLinkout?url=https%3A%2F%2Fdoi.org%2F10.1016%2F978-3-540-37224-0&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1007%2F978-3-540-37224-0&linkType=VIEW_NO_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT
https://www.tandfonline.com/action/getFTRLinkout?url=https%3A%2F%2Fdoi.org%2F10.1016%2F28ASCE%290733-9496%282008%29134%3A1%2845%29&doi=10.1080%2F02626667.2011.580747&doiOfLink=10.1016%2F28ASCE%290733-9496%282008%29134%3A1%2845%29&linkType=VIEW_NO_ACCESS&linkLocation=Reference&linkSource=FULL_TEXT

https://www.btselem.org/publications/202305_parched#:~:text=However%20Israel%20acts%20as%20if,water%20according%20to%20predetermined%20allocations.

<https://www.oxfam.org/en/press-releases/israel-using-water-weapon-war-gaza-supply-plummets-94-creating-deadly-health>

<https://www.dutchscholarsforpalestine.nl/the-weaponisation-of-water-in-gaza#:~:text=Gaza%20used%20to%20supplement%20groundwater,of%20water%20infrastructure%20in%20Gaza.>